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Abstract

The present contribution reports on a direct numerical simulation (DNS) of a turbulent boundary layer that undergoes sepa-

ration due to the presence of a pressure gradient at a moderate Reynolds number. The variation of the free-stream velocity has been

chosen according to an experiment of Kalter and Fernholz (The influence of free-stream turbulence on an axisymmetric turbulent

boundary layer in, and relaxing from, an adverse pressure gradient. In: 5th European Turbulence Conference, Siena, 1994). Because

of limited computational resources, the momentum thickness Reynolds number at the reference position had to be reduced to

Reh ¼ 870 which is about half as large as that of the experiment. Nevertheless, a comparison of integral parameters as well as first

and higher order moments shows fair agreement between DNS and experiment. An inspection of the momentum balance underlines

the prominent role of the Reynolds stresses in controlling the structure and geometry of the separation bubble. Its shape and

dynamics are governed by large scale vortices reaching from the wall to the shear layer above it. � 2002 Elsevier Science Inc. All

rights reserved.

1. Introduction

The separation bubble embedded in a turbulent flat
plate boundary layer as a result of a streamwise adverse
pressure gradient is highly unsteady and characterized
by low-frequency oscillations. Flow reversal starts
intermittently at a position far upstream of the time-
averaged separation line at which the fraction of nega-
tive wall shear stress reaches about 50%. The separation
line doesn’t move forward and backward as a straight
line but displays a strongly irregular shape. A common
feature of separating flows is the breakdown of the
logarithmic law-of-the wall which starts approximately
at 1% backflow (Simpson et al., 1977; Simpson, 1989). If
the thickness of the recirculation bubble is small com-
pared to the upstream boundary layer thickness, then
the backflow seems to be mainly governed by large-scale
vortices occuring in the shear layer above the recircu-
lating zone. Simpson et al. (1981) could show that in
such a case, the recirculation bubble constitutes a highly
active turbulent region governed from outside in which
traditional model approaches for attached flows fail
completely.

The improvement of turbulence models in such flow
regimes requires a deep understanding of the dynamics

and mechanisms of separation and reattachment. DNS
is a valuable tool to improve our corresponding physical
insight because it provides accurate three-dimensional
and time-dependent information of the flow variables.
Up to now, only a limited number of direct numerical
simulations (DNSs) of separated turbulent boundary
layers are available. The separation of turbulent
boundary layers is fundamentally different from that of
laminar boundary layers that undergo transition be-
tween separation and reattachment.

The separation of a turbulent boundary layer has first
been numerically analyzed by Coleman and Spalart
(1993). Recently, Skote et al. (2000) and Skote and
Henningson (2001) performed a DNS of a separated
turbulent boundary layer. An extensive study has been
performed by Na and Moin (1998) at a low Reynolds
number (Reh ¼ 300, based on inlet free-stream velocity
and momentum thickness). In their study, separation/
reattachment have been enforced by a strong adverse/
favourable pressure gradient in streamwise direction.

The study presented here is the first DNS that aims at
predicting an actually performed experiment of a sepa-
rated turbulent boundary layer (Kalter and Fernholz,
1994). In comparison to Na and Moin’s study, it has a
significantly higher Reynolds number and the reattach-
ment occurs in a region with vanishing rather than
strong favourable pressure gradient. Therefore, Rey-
nolds stresses play a crucial role in the momentum
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balance of the presented flow. This study aims at pro-
viding data for improving turbulence models and
physical insight into the dynamics of separation and
reattachment of this flow.

2. Computational details

The following section describes the numerical method
used in the simulations. It consists of a finite-volume
method formulated on a non-equidistant staggered
mesh. A Poisson equation for the pressure correction is
obtained by the projection-method according to Chorin
(1968). A local grid refinement has been introduced in
order to save computational resources while achieving
the required resolution near the wall. This local grid
refinement was crucial for performing the present DNS
on the available hardware. For an efficient use of the
hardware, the code has been fully vectorized and par-
allelised.

2.1. Basic scheme

The flow variables, velocity components and pres-
sure, are defined on a non-equidistant Cartesian mesh in
a staggered arrangement. Principally, velocity compo-
nents are stored in the centres of cell faces, while pres-
sure is stored in the cell centres. The specific discrete
formulations are derived by integrating the Navier–
Stokes equations for an incompressible fluid over the
corresponding control cells surrounding the definition
points of the individual variables. We are using the mid-
point rule for approximating the fluxes by the variables.
The required interpolations and the approximation of
the first derivatives are performed by linear interpola-
tion and second order central finite difference formula-
tions, respectively. This altogether ensures second order
accuracy of the spatial discretisation (e.g., Ferziger and
Peri�cc, 1997).

The discrete solution is advanced in time by a leap-
frog time step which is second order accurate with re-
spect to the convection term.

unþ1 ¼ un�1 þ 2Dt CðunÞ
�

þ Dðun�1Þ � Gðpnþ1Þ
�

ð1Þ

C, D and G denote herein the discrete convective, dif-
fusive and gradient operators. The pressure at the new
time level pnþ1 ¼ pn þ Dpnþ1 is determined by the solu-
tion of the Poisson equation

Div GðDpnþ1Þ
� �

¼ 1

2Dt
Div ðu�Þ; ð2Þ

where u� is an intermediate velocity field obtained by
solving Eq. (1) by using the pressure pn at the known
time level. A divergence-free field unþ1 is obtained after a
velocity correction step

unþ1 ¼ u� � 2DtGðDpnþ1Þ: ð3Þ
The combination of central interpolation and a leapfrog
time step is energy conserving for the one-dimensional
pure convection equation. This is the reason why it is
especially suited for LES and DNS. In combination with
the diffusion operator, the leapfrog time step is slightly
unstable (compare Fletcher, 1988). Therefore, the dif-
fusive term is taken at the time level n� 1 in Eq. (1).
Every 41 time steps, an averaging step is performed in
order to prevent 2Dt oscillations.

The Poisson equation (2) is solved by an iterative
procedure accelerated by a multigrid cycle. The
smoother is based on the velocity–pressure iteration
presented by Hirt et al. (1975) with overrelaxation. This
scheme gives the same convergence properties as a
conventional Gauss–Seidel iteration with successive
overrelaxation (SOR). The advantage of the present
algorithm is the easy treatment of boundaries, at which
only velocity boundary conditions have to be specified.
In order to improve the convergence of the iterative
solver, a multigrid procedure has been implemented.

2.2. Local grid refinement

The introduction of a locally refined grid near the
wall is one of the key points for an efficient simulation of
the separated turbulent boundary layer. The refinement
is achieved by dividing one coarse-grid cell into eight
fine-grid cells. The coarse and the fine-grids are arranged
in an overlapping way, so that the coarse-grid is defined
globally (global grid) and the fine-grid is defined only
locally (zonal grid). The coarse-grid and the fine-grid
solutions are fully coupled. The coupling is achieved by
transferring the fine-grid solution in the overlap region
to the coarse-grid each time before the algorithm
changes from the fine-grid level to the coarse-grid level.
We use averaging over four cell faces for the velocities
and averaging over eight grid cells for the pressure re-
striction. While solving the Poisson equation on both
levels, we use the pressure correction on the coarse-grid
as a new pressure estimate for the fine-grid in the multi-
grid cycle.

The treatment of the interface between fine- and
coarse-grid needs special attention. It appears at two
different positions in the algorithm, (i) as pressure
boundary condition for the fine-grid and (ii) as velocity
boundary condition for the fine-grid. We are using so-
called ghost cells in order to manage the boundary
conditions for the grid interface. The situation is dis-
played for a two-dimensional configuration in Fig. 1.
Capital letters indicate coarse-grid variables and small
letters indicate fine-grid variables. The fine-grid vari-
ables on the left hand side of Fig. 1 are called ghost cells.
The coarse-grid variables on the right hand side of Fig. 1
are obtained from the fine-grid variables by a restriction.
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Due to the staggered arrangement of the variables and
the special refinement strategy, both coarse-grid vari-
ables as well as fine-grid variables are located on the grid
interface.

On the local grid, a Neumann boundary condition is
used for the pressure at the fine-grid/coarse-grid inter-
face. It has been found that this treatment is superior to
a Dirichlet boundary condition for the fine-grid pressure
correction at the grid interface (Manhart, 1998). As a
consequence, the fine-grid interface velocities uði� 1; jÞ
and uði� 1; jþ 1Þ in Fig. 1 are determined by a suitable
conservative prolongation from the coarse-grid interface
velocity UðI � 1; JÞ. Our tests showed that first order
interpolation leads to smaller distortions at the grid in-
terface than second order interpolations due to their
inherent damping properties (Manhart, 2002).

The local grid approach has been used successfully
for turbulent channel flow (Manhart, 1998), turbulent
zero pressure gradient and adverse pressure gradient
flow (Manhart, 1999a,b,c). For a more detailed de-
scription of the algorithm see (Manhart, 2002).

2.3. Boundary conditions

Since the flow is homogeneous in spanwise direction,
periodic boundary conditions are prescribed in this di-
rection. The wall is treated by a no-slip condition. At the
outflow, a zero gradient condition is applied for the
velocities, which compiles into a Dirichlet condition for
the pressure (p ¼ 0). Due to its non-physical behaviour,
this condition produces a distortion of the flow traveling

upstream. The region of influence visible in the skin
friction coefficient extends over about two inflow
boundary layer thicknesses, which is smaller than one
outflow boundary layer thickness and corresponds to
about 2% of the computational domain (see e.g. Fig. 3).

At the upper boundary of the domain, the vertical
velocity is prescribed. It has been obtained from a prior
coarse-grid simulation (Manhart and Friedrich, 1999).
Due to different sizes of the separation bubbles in the
prior and the present simulation, the vertical velocity
had to be slightly adjusted in order to obtain the correct
streamwise variation of the freestream velocity. In
principle, this adjustment could be avoided if the desired
streamwise variation of the displacement thickness were
known. Lund et al. (1998) (see also Piomelli et al., 2000)
proposed a method of determining the vertical velocity
through the upper surface by integrating the continuity
equation in wall-normal direction. Unfortunately, the
streamwise variation of the displacement thickness was
not known for the complete flow domain. In the prior
simulation, the pressure gradient has been introduced
by a Dirichlet condition for the pressure. There, the
streamwise variation of the pressure has been derived
from the variation of the freestream velocity using
Bernoulli’s equation. In laminar flows, no difference
between the various approaches could be observed.
Looking back and comparing the prior simulation with
the present one, the use of a Dirichlet condition for the
pressure at the upper surface seems to be superior to
specifying the vertical velocity component through the
upper surface.

Time-dependent inflow profiles are constructed by
superposition of a time-mean profile and a fluctuation
from a position 10d0 downstream (where d0 is the
boundary layer thickness at the inlet plane, see Fig. 2). A
detailed description of that method, which is a variant of
the method proposed by Schmitt et al. (1986), is given in
Manhart and Friedrich (1999). Herein, a comparison
with the method proposed by Lund et al. (1998) revealed
no significant differences between both approaches.

Fig. 1. Configuration of grid interface between local fine- and global

coarse-grid.

Fig. 2. Geometry of the boundary layer simulations (not to scale).
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2.4. Configuration

The simulation presented here is designed according
to an experiment performed by Kalter and Fernholz
(1994). In this experiment a turbulent boundary layer
developing along a circular cylinder (Reh � 1500) is
subjected to a streamwise adverse pressure gradient until
separation occurs. In the subsequent nearly zero-pres-
sure gradient region the flow reattaches and slowly re-
laxes to a canonical boundary layer. The separation
bubble is very thin and can be suppressed by a certain
level of freestream turbulence. During the separation
process the thickness of the boundary layer grows by a
factor of about 9.

In the simulation, a rectangular domain has been
selected covering the separation bubble. In addition to
that, the following simplifications have been introduced.
First, a flat plate boundary layer has been simulated
instead of a boundary layer along a cylindrical body
with spanwise curvature. The effect of this simplification
is small because the ratio of boundary layer thickness/
diameter is small. Second, the Reynolds number has
been lowered in the simulation compared to the exper-
iment, which may lead to some changes in the size of
the separation bubble. So, we do not expect a one-to-
one quantitative correspondence between simulation
and experiment. A third difference between experiment
and simulation arises from the inherent presence of a
small amount of freestream turbulence in the experi-
ment. Although at a very low level (�0.5%), this free-
stream turbulence might have some influence on the
evolution of the separation bubble since the latter is very
sensitive to the freestream turbulence level (Kalter and
Fernholz, 1994).

In terms of boundary layer thickness at the inlet d0,
the reference position xr in the simulation is located 10d0

downstream of the inlet (at x=d0 ¼ 5:0). Using the free-
stream velocity U0 at the inlet, the Reynolds numbers at
this position are Reh ¼ 870 and 1560 in the simulation
and the experiment, respectively. The Reynolds number
based on wall friction velocity is Res ¼ 319 at the ref-
erence position. In terms of the displacement thickness
d�r at the reference position, the dimensions of the
computational box are Lx ¼ 542d�r in streamwise,
Ly ¼ 128d�r in spanwise and Lz ¼ 54d�r in vertical direc-
tion. In what follows, all quantities are normalized by
U0 and d0, respectively (d�r=d0 ¼ 0:188).

We performed a preliminary simulation, denoted here
as ‘‘coarse DNS’’ (Manhart and Friedrich, 1999), in
which a zonal grid covered the wall region from the
inflow to the outflow plane. An analysis of the direc-
tional dissipation scale (see Manhart, 2000) in this
simulation revealed that the local grid is necessary only
in the first half of the computational domain. A second
finer DNS was designed in which the zonal grid covers
only the first half of the computational domain (Fig. 2).

The parameters of both simulations are shown in Table
1. With a wall normal grid spacing at the reference po-
sition xr of Dzþmin ¼ 1:6, the position of the first grid
point is at zþ ¼ 0:8. The simulations were carried out on
a Fujitsu VPP/700 vector-parallel computer. By using 16
processors, about 12 G flop/s were achieved. One time
step of DtU0=d0 ¼ 0:005 took about 28 CPU-s. The
present simulation would not have been possible with-
out the use of a local grid refinement on the available
hardware, since it saved a factor of more than three in
computational resources.

3. Results

3.1. Global flow description

In Fig. 3, the distributions of the free-stream velocity
U1 and the skin friction coefficient cf are shown. Unlike
in the simulation of Skote et al. (2000) and Skote and

Table 1

Parameters of the numerical grids

NX NY NZ Dxþ Dyþ Dzþ

Coarse

Global 640 320 96 52.8 24.8 6.6

Local 1280 640 32 26.4 12.4 3.3

Fine

Global 1280 448 160 25.5 17.2 3.2

Local 1280 896 32 11.7 7.2 1.6

Inner coordinates are based on the friction velocity at the reference

position.

Fig. 3. Distribution of free-stream velocity (top) and skin friction co-

efficient (bottom) in the separated turbulent boundary layer.
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Henningson (2001), there is no power-law variation of
the freestream velocity, which gives rise to a continu-
ously changing pressure gradient parameter b. Com-
pared to the simulation of Na and Moin (1998), the
deceleration of the freestream velocity is considerably
smaller.

Since there is no noticeable variation of the free-
stream velocity after separation (x=d0 � 40), the bound-
ary layer is slowly relaxing from the separated regime by
diffusive and convective processes only. This leads to a
long regime where cf is nearly zero. In both simulations,
the separation bubble as measured by a negative cf -va-
lue is a little bit longer than in the experiment. The
length of the recirculation zone doesn’t seem to be ap-
preciably influenced by the grid resolution. As seen in an
analysis of the spanwise energy spectra in the prior
coarse-grid simulation (Manhart and Friedrich, 1999),
the grid resolution requirements become increas-
ingly less demanding as one approaches the separation
zone.

The improvement of cf by the use of a finer grid is
clearly visible in the upstream regime where the adverse
pressure gradient sets in. The difference between fine-
grid DNS and experiment can be attributed to the dif-
ferent Reynolds numbers. Coles’ empirical correlation
(Coles, 1962) gives values of cf � 0:004 for Reh ¼ 1500
which corresponds to the experiment and cf � 0:0047
for Reh ¼ 870 which corresponds to our DNS. The
coarse-grid simulation produces a cf -value too high in
this region. It is slowly approaching the more realistic
value of the fine-grid DNS and, surprisingly, reaches
separation at the same streamwise position. The relative
unimportance of the grid resolution on the recirculation
length leaves one main reason for the larger separation
region in the simulation, namely the lower Reynolds
number.

The displacement thickness d�=d0 and the momentum
thickness h=d0 are shown in Fig. 4. Both are rather
unaffected by grid resolution and in good agreement
with the experiment. The displacement thickness reaches
a maximum value in the separation region, where it has
grown by a factor of about 20 from its initial value. This
clearly shows the need for a large computational domain
both, in wall-normal and spanwise directions.

The streamlines of the averaged velocity field in Fig. 5
display the geometry of the separation bubble by the
intersection points between the wall and the dividing
streamline. According to the definition of Simpson
(1996), the positions indicated in the Figure are incipient
detachment (ID, 1% backflow), intermittent transi-
tory detachment (ITD, 20% backflow) and transitory
detachment (TD, 50% backflow). TD is at the same
position as sw ¼ 0:0 which denotes detachment or sep-
aration (at x=d0 ¼ 44). The flow reattaches at x=d0 ¼ 72.
The height of the separation bubble is about d0 (strong
separation).

3.2. First- and higher-order moments

Profiles of streamwise velocity averaged in time and
spanwise direction are compared in Fig. 6 with experi-
mental data. Two positions are located in the adverse
pressure gradient region (x=d0 ¼ 22 and 34) and one
after reattachment (x=d0 ¼ 90:0). In the separation zone,
no experimental profiles are available. Before separa-
tion, good accordance between all results has been
achieved. After reattachment, the profiles differ due to
the different lengths of computed and measured sepa-
ration bubbles. The profiles are still relaxing towards a
canonical zero pressure gradient boundary layer. Fig. 7
shows, how the profiles of the DNS (fine) approach the
experimental one at x=d0 ¼ 90 with increasing distance
from the reattachment point. Unfortunately, the com-
putational resources did not allow for a longer domain
to capture more of the downstream development of the
relaxing boundary layer. A normalization of the posi-
tions with the corresponding bubble length and a com-

Fig. 4. Displacement (top) and momentum (bottom) thickness in the

separated turbulent boundary layer.

Fig. 5. Streamlines of averaged velocity field with various positions of

detachment according to Simpson (1996). The dashed line shows the

dividing streamline (W ¼ 0).
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parison at equal normalized positions would perhaps
provide better agreement. With this scaling, however,
the measuring position (x=d0 ¼ 90) lies outside the
computational domain.

The RMS-values of the streamwise velocity fluctua-
tions are shown in Figs. 8 and 9. A significant grid
dependence of the profiles can be observed. The coarse-

grid produces too high near-wall peaks and a bump at
the location of the zonal/global grid interface (at
z=d0 ¼ 0:44). The fine-grid shows only a small step at the
interface which is only visible at x=d0 ¼ 4. This step can
be explained by the additional small scale energy re-
solved by the finer local grid. At upstream positions

Fig. 6. Averaged streamwise velocity profiles in comparison with the

experiment of Kalter and Fernholz (1994); from left to right:

x=d0 ¼ 22, 34 and 90 (profiles are shifted by hui=U0 ¼ 0:5).

Fig. 7. Averaged streamwise velocity profiles in comparison with the

experiment of Kalter and Fernholz (1994) (at x=d0 ¼ 90:0); DNS

profiles from left to right: x=d0 ¼ 90:0, 92.6 and 95.0.

Fig. 8. RMS of the streamwise velocity component in comparison with

the experiment of Kalter and Fernholz (1994); from left to right:

x=d0 ¼ 4, 16 and 22 (profiles are shifted by urms=U0 ¼ 0:1).

Fig. 9. RMS of the streamwise velocity component in comparison with

the experiment of Kalter and Fernholz (1994); from left to right:

x=d0 ¼ 34, 50 and 90 (profiles are shifted by urms=U0 ¼ 0:1).
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(x=d0 < 16), the near-wall peak in the fine DNS is higher
than in the experiment. This is not due to a poor grid
resolution, but rather a Reynolds number effect. The
same Reynolds number dependence of the peak RMS-
value can also be observed in results reported by Fern-
holz and Finley (1996) or in the data of Spalart (1988)
(when plotted in outer variables). By the action of the
pressure gradient, the peak of the RMS values moves
away from the wall in accordance with the growth of the
boundary layer thickness.

Further assessment of the simulation data is made by
comparing higher order moments of the streamwise
velocity component. We took 1656 statistically inde-
pendent samples for the higher moments which covered
a time of 828d0=U0. This still seems to be insufficient to
reach a fully converged state as can be seen by the in-
clusion of the moments after 357 samples in the plots.
Nevertheless, the accordance between DNS and exper-
iment is satisfying. The large negative peaks in the
skewness (Fig. 10) mark the edge of the boundary layer.
Throughout the boundary layer, the skewness is small,
reaching strong positive peaks at the wall, indicating
remarkable non-Gaussianity only close to the wall and
at the boundary layer edge. In the flatness profiles (Fig.
11), the boundary layer edge is marked by strong posi-
tive peaks. The main part of the boundary layer is near a
value of 3, indicating Gaussianity. Again, near the wall,
larger values show the loss of Gaussianity, like it is
observed in many other studies of wall turbulence.

3.3. Momentum balance

In order to shed some light on the internal structure
of the flow during the deceleration, separation and re-
attachment, we consider the mean streamwise momen-
tum balance

0 ¼ � oUU
ox

þ oUW
oz

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C1

� 1

q
oP
ox|fflfflffl{zfflfflffl}

P1

þm
o2U
ox2

þ o2U
oz2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D1

� ou0u0

ox
� ou0w0

oz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
R1

ð4Þ

The individual terms herein are identified as convection
(C1), pressure (P1), viscous (D1) and Reynolds (R1) term.
We plot profiles of the individual terms in the Figs. 12–
14. The incoming flow corresponds to a zero pressure
gradient boundary layer, where close to the wall viscous
and Reynolds stresses are in balance. This structure is
changed during the deceleration of the boundary layer
(x=d0 ¼ 34:0, Fig. 12) by the action of the adverse
pressure gradient which is in balance with the convective
term outside of the boundary layer. Since the pressure
term is nearly constant throughout the layer, its decel-
erating effect is constant. Within the boundary layer, the
Reynolds term is positive close to the wall and negative
in the outer layer. This term transports momentum to
the wall and is the only process to delay separation.

Within the separation bubble (x=d0 ¼ 50:0, Fig. 13),
the decelerative effect of the pressure gradient is still
present, but much weaker. The Reynolds term has be-

Fig. 10. Skewness of the streamwise velocity component in comparison

with the experiment of Kalter and Fernholz (1994); from left to right:

x=d0 ¼ 22, 34 and 90 (profiles are shifted by uske=U0 ¼ 3:0).

Fig. 11. Flatness of the streamwise velocity component in comparison

with the experiment of Kalter and Fernholz (1994); from left to right:

x=d0 ¼ 22, 34 and 90 (profiles are shifted by ufla=U0 ¼ 10:0).
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come increasingly important for the momentum bal-
ance. Within the recirculation zone (z=d0 6 2:0), this
term balances the weak adverse pressure gradient and is
the only term to transport momentum, since the con-
vection term vanishes. The free shear layer surrounding
the recirculation zone is characterized by peak values in
the counteracting convection and Reynolds stress terms.
A similar flow behaviour can be observed in recircula-
tion zones generated by backsteps (Le et al., 1997).

After reattachment, the boundary layer is slowly re-
laxing towards its zero pressure gradient state. Within
the computational domain (x=d0 ¼ 90:0, Fig. 14), the
internal momentum balance is however still fundamen-
tally different from that of a zero pressure gradient

boundary layer. Besides this, there is a weak accelerating
pressure gradient. An interesting feature of this relaxing
boundary layer is the change in sign of the convective
and Reynolds terms. In fact, the two convective terms
are counteracting with �oUU=ox being negative and
�oUW =oz being positive. For z=d0 > 4:0 the latter is
stronger than the former, which gives the change in sign.
This entrains a similar behaviour in the Reynolds stress
term, since other terms are small.

3.4. Instantaneous structure of the separation bubble

The separation and reattachment lines are not fixed in
space and time. In order to get an impression of the
complicated nature of the instantaneous shape of the
separation bubble, we show grey-scale plots of the in-
stantaneous streamwise velocity component. In Fig. 15,
perspective views of the streamwise velocity component
in planes vertical to the coordinate axes are shown.
Different velocity magnitudes are coded by different grey
scales. The freestream velocity is coded by a mild grey,
slow velocities by dark tones. The backflow velocities
are indicated by white spots within the dark, nearly
black regions. In this view, the strong thickening of the
boundary layer during the separation process becomes
obvious. This is connected with the growth of large scale
structures due to deceleration, which extend throughout
the whole layer from the wall to the shear layer above
the separation zone. The instantaneous shape of the
separation bubble is displayed in Fig. 16 by a top view
of the isosurface of u ¼ 0:0. The main feature emanating
from the pictures is the highly irregular shape of the
separation bubble. At the instant shown, the separa-
tion line meanders between x=d0 ¼ 40 and 50 with a
dominant spanwise wavelength of 5d� (in terms of local

Fig. 12. Mean streamwise momentum balance normalized by U 2
0 =d

�

before separation (x=d0 ¼ 34).

Fig. 13. Mean streamwise momentum balance normalized by U2
0 =d

� in

the separation bubble (x=d0 ¼ 50).

Fig. 14. Mean streamwise momentum balance normalized by U2
0 =d

�

after reattachment (x=d0 ¼ 90).
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displacement thickness). The holes in the zero-velocity
surface are generated by blobs of forward flow reaching
down to the wall. This supports the idea of a strong
vertical momentum transport in the free shear layer
through which positive streamwise momentum even
reaches the wall.

4. Conclusions

We have performed a DNS of a fully turbulent flat
plate boundary layer with separation as a result of a
streamwise adverse pressure gradient. After reattach-
ment, the boundary layer slowly relaxes to a zero-pres-
sure gradient flow. To our knowledge, this is the first
DNS of such a flow which is comparable to a real ex-
periment. The accordance with the experiment is satis-
fying so that the DNS data can serve as a basis for
investigating turbulence models. The DNS gives a
slightly longer separation bubble than the experiment

which can be attributed to the lower Reynolds number
in the DNS. Ongoing investigations using LES will shed
more light on the sensitivity of the separation bubble to
the Reynolds number.

Profiles of the momentum balance show an essential
part of the physics of this particular flow. The separa-
tion length is determined mainly by the action of the
Reynolds stresses which points towards a sensitivity of
the separation bubble to the level of oncoming turbu-
lence for this flow. The separation bubble shows a
complicated spatial structure including large-scale vari-
ations in spanwise direction and large vortices reaching
from the shear layer above the backflow region down to
the wall. A more detailed analysis is subject of current
work considering the structure and dynamical features
of the separation and reattachment process. The inves-
tigation of the near-wall behaviour during separation
and reattachment in that flow has led to the proposal of
a new wall model for large-eddy simulation (Manhart,
2001).

Fig. 16. Instantaneous velocity fields: top view of isosurface u ¼ 0:0 of streamwise velocity component.

Fig. 15. Instantaneous velocity fields: perspective view of streamwise velocity component. Whole domain (top) and zoom (bottom).
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